LA-UR-20-30460 ## Guide for Using ENDF/B-VIII.0 Nuclear Data with MCNP Forrest B. Brown, Michael E. Rising Monte Carlo Methods, Codes. & Applications Group (XCP-3) Los Alamos National Laboratory, PO Box 1663, MS A143, Los Alamos NM 87545 December 09, 2020 #### 1.0 Introduction This report provides guidance for using the ENDF/B-VIII.0 nuclear data that were released in 2018 [1,2] and 2020 [3] with MCNP. The Appendices to this report provide detailed instructions for: Appendix A: Obtaining and installing the new ENDF/B-VIII.0 ACE nuclear data Appendix B. Obtaining & using XSDIR files that include ENDF/B-VIII.0 data Appendix C: ENDF/B-VIII.0-based ACE files for neutron cross-sections. A listing of the available temperatures and ZA numbers for neutron cross-sections (ACE files with suffix .nnC) Appendix D: ENDF/B-VIII.0-based ACE files for thermal scattering law (TSL) data, $S(\alpha, \beta)$. A listing of the available thermal scattering $S(\alpha, \beta)$ data (ACE files with suffix .nnT) The next section below provides guidance for modifying existing *mcnp* input files to use the ENDF/B-VIII.0 data. Detailed results from running several benchmark suites for nuclear criticality safety with both ENDF/B-VII.1 and ENDF/B-VIII.0 nuclear data are reported in [4]. It is important to note that this report deals only with TSL data released in 2020. With the original release of ENDF/B-VIII.0 in 2018, the ACE files for neutron cross-sections were contained in a directory called Lib80X and the ACE files for TSL data were contained in a directory called ENDF80SaB. A few years later, it was determined that many of the TSL data files had been generated with faulty data or with incorrect processing, and a new set of ACE files for TSL data was created, with the corrected files contained in directory ENDF80SaB2 [3]. ## 2.0 Guidance for modifying existing MCNP input files to use ENDF/B-VIII.0 nuclear data After obtaining and installing the new ACE files as described in Appendices A & B, existing MCNP input files must usually be modified to use the new ENDF/B-VIII.0-based ACE data. Guidance is provided below. #### A. Neutron cross-section ZAIDs If the Appendix B instructions were followed to make the ENDF/B-VIII.0 ACE files the default data, then ZA numbers can be used on material and FM cards without supplying suffixes. The default nuclear data will be the ENDF/B-VIII.0 files at room temperature. If instead the ENDF/B-VII.1 ACE files were chosen as the default, then explicit suffixes (e.g., .00c) must be supplied to use the ENDF/B-VIII.0 ACE data for materials and FM cards. If suffixes are needed, refer to the information in Appendices C & D to select the proper suffixes. In general, for room temperature problems, all ENDF/B-VII.1 suffixes of .80c should be changed to .00c on all material cards and FM cards in order to use ENDF/B-VIII.0 data. (Also, since ENDF/B-VII.1 data for 1-H-1 was corrected and released as 1001.90c, use of 1001.90c should be changed to 1001.00c.) Also note that the ENDF/B-VIII.0 data includes ACE files for nuclides that were not present in the ENDF/B-VII.1 data. These newly available nuclides are noted in Appendix C. ## B. Thermal scattering data Because the new ENDF/B-VIII.0 ACE data for thermal scattering has significant changes in the ACE file names, all MT cards need to be reviewed and appropriately modified. Appendix C lists the new names to be used on the MT cards. Typical changes might be: ``` lwtr → h-h2o hwtr → d-d2o, o-d2o poly \rightarrow h-poly be-o → be-beo o-be → o-beo be \rightarrow be-met h-zr → h-zrh zr-h → zr-zrh grph → grph10 or grph30 grph or ``` For room temperature data (if it exists), the suffix to use is .40t. (There is no room temperature data for h-ice, o-ice, lmeth, orthoD, orthoH, paraD, paraH, or smeth.) For the TSL data for pairs of nuclides, such as be-beo & o-beo, it is important to use both datasets on MT cards. Using just one of the nuclides (and not the other paired nuclide) may lead to significant reactivity differences. There are new ACE data files for H and O in ice, H in lucite, and Si and C in silicon carbide. The carbon data (qrph) are also now available for graphite at 10% porosity, 30% porosity, or solid. ## C. Special treatment for Carbon The previous ENDF/B-VII.1 ACE data included data for natural, elemental carbon only, with ZA = 6000. The new ENDF/B-VIII.0 ACE data does <u>not</u> include data for elemental carbon – the specific carbon isotopes 6012 and 6013 must be used. Material and FM cards that previously used 6000 or 6000.80c must be changed to use 6012 or 6012.00c or a mixture of 6012.00c (98.93 atom %) plus 6013.00c (1.07 atom %). These changes should be made to both material and FM cards. ## D. Testing After installing the ENDF/B-VIII.0 data, updating the XSDIR file, and modifying mcnp input files, it is essential to run a few simple mcnp problems to test & verify that the procedures were followed correctly. For a few test problems, the listing in the mcnp output file of cross-section data used in the problem should be examined, including the tables summarizing how the $S(\alpha, \beta)$ data were assigned to particular nuclides. Be sure to examine *mcnp6* "print table 100" and "print table 102". ### **ACKNOWLEDGMENTS** This work was supported by the US DOE-NNSA Nuclear Criticality Safety Program. ## **REFERENCES** - 1. J.L. Conlin, W. Haeck, et al., "Release of ENDF/B-VIII.0-Based ACE Data Files", LA-UR-18-24034 (2018). - 2. J.L. Conlin, et al., web pages at nucleardata.lanl.gov - 3. D.K. Parsons, "NJOY Processing of ENDF/B-VIII.0 Thermal Scattering Files", LA-UR-18-25096 (2018). - 4. J.L. Alwin, F.B. Brown, M.E. Rising, "Verification of MCNP6.2 with ENDF/B-VIII.0 Nuclear Data for Nuclear Criticality Safety Applications", LA-UR-19-23348 (2019). ### Appendix A. Obtaining and installing the new ENDF/B-VIII.0 ACE nuclear data The new ACE files based on ENDF/B-VIII.0 nuclear data are available from the website **nucleardata.lanl.gov**. While that website has instructions for installing the data on your computer, it is suggested that NCS users instead follow the directions below. (For Windows systems, use the mcnp-command-window where terminal window commands are noted below.) (1) On your computer, create a temporary folder (directory) for downloading and decompressing the data files. Make sure that about 50 GB of disk space is available to handle the new data. In the discussion below, this temporary folder will be called *scratch*; replace references to *scratch* by the name of the folder you created. (2) Go to the website nucleardata.lanl.gov, and then download these files into your scratch folder: ``` Windows: Lib80X.zip (\sim 7 GB), ENDF80SaB.zip (\sim 2.5 GB) Linux/Mac:Lib80X.tgz (\sim 7 GB), ENDF80SaB.tgz (\sim 2.5 GB) ``` (3) In a terminal window, decompress the downloaded files: ``` Windows: cd scratch unzip Lib80X.zip unzip ENDF80SaB2.zip Linux/Mac:cd scratch tar xfz Lib80X.tgz tar xfz ENDF80SaB2.tgz ``` The expanded data files require about 45 GB of disk storage space. There will be folders created in *scratch* called Lib80X and ENDF80SaB2. (4) In the terminal window, move the new data folders into your existing *mcnp* data storage folder: ``` Windows: move Lib80X %DATAPATH%\xdata move ENDF80SaB2 %DATAPATH%\xdata Linux/Mac:mv Lib80X $DATAPATH/xdata mv ENDF80SaB2 $DATAPATH/xdata ``` Note that the instructions in this step differ from the instructions on the nucleardata website. The new data are moved into xdata folder, rather than the higher-level main data folder. ## Appendix B. Obtaining & using XSDIR files that include ENDF/B-VIII.0 data (1) Download these files from the **mcnp.lanl.gov** website into your *scratch* folder. They are found in the Reference Collection, in the section for "Nuclear Data & Physics": ``` xsdir_mcnp6.2_endf71,80.txt xsdir mcnp6.2 endf80,71.txt ``` (2) In a terminal window, rename the files in *scratch* to remove the .txt suffix. ``` Windows: rename xsdir_mcnp6.2_endf71,80.txt xsdir_mcnp6.2_endf71,80 rename xsdir_mcnp6.2_endf80,71.txt xsdir_mcnp6.2_endf80,71 Linux/Mac: mv xsdir_mcnp6.2_endf71,80.txt xsdir_mcnp6.2_endf71,80 mv xsdir_mcnp6.2_endf80,71.txt xsdir_mcnp6.2_endf80,71 ``` (3) In a terminal window, move the 2 files into the existing MCNP data storage folder: ``` Windows: move xsdir_mcnp6.2_endf71,80 %DATAPATH% move xsdir_mcnp6.2_endf80,71 %DATAPATH% Linux/Mac: mv xsdir_mcnp6.2_endf71,80 $DATAPATH mv xsdir_mcnp6.2_endf80,71 $DATAPATH ``` (4) In a terminal window, rename the existing xsdir mcnp6.2 (to save the original): ``` Windows: cd %DATAPATH% rename xsdir_mcnp6.2 xsdir_mcnp6.2_old Linux/Mac: cd $DATAPATH mv xsdir mcnp6.2 xsdir mcnp6.2 old ``` (5) Decide what the default data should be and recreate the xsdir mcnp6.2 file: Both xsdir files (xsdir_mcnp6.2_endf71,80 and xsdir_mcnp6.2_endf80,71) contain entries that include the ENDF/B-VII.1 and ENDF/B-VIII.0 data, but provide different defaults: - xsdir mcnp6.2 endf71,80: - This file defaults ZAIDs without suffixes to the ENDF/B-VII.1 ACE data at room temperature. - The ENDF/B-VIII.0 data are available, but are not the defaults. - xsdir mcnp6.2 endf80,71: - This file defaults ZAIDs without suffixes to the ENDF/B-VIII.0 ACE data at room temperature. - The ENDF/B-VII.1 data are available, but are not the defaults. It is up to the user (or their site) to decide whether the default data for ZAIDs without suffixes should be the ENDF/B-VII.1 or ENDF/B-VIII.0 ACE files. ### Appendix B. Obtaining & using XSDIR files that include ENDF/B-VIII.0 data In a terminal window, to make the default data be ENDF/B-VII.1: Windows: cd %DATAPATH% copy xsdir mcnp6.2 endf71,80 xsdir mcnp6.2 Linux/Mac: cd \$DATAPATH cp xsdir mcnp6.2 endf71,80 xsdir mcnp6.2 In a terminal window, to make the default data be ENDF/B-VIII.0: Windows: cd %DATAPATH% copy xsdir mcnp6.2 endf80,71 xsdir mcnp6.2 Linux/Mac: cd \$DATAPATH cp xsdir mcnp6.2 endf80,71 xsdir mcnp6.2 (6) Run a test problem to verify that the data files were installed and configured correctly: For each run, examine the *mcnp6.2* output file to check that the correct ACE data files were used. Make sure that the Default case uses the correct versions (VII.1 or VIII.0, as per Step (5).) | Default | Explicit ENDF/B-VII.1 | Explicit ENDF/B-VIII.0 | | | | |---|---|---|--|--|--| | Godiva - simple case 1 1 -18.74 -1 imp:n=1 2 0 1 imp:n=0 | Godiva - simple case
1 1 -18.74 -1 imp:n=1
2 0 1 imp:n=0 | Godiva - simple case
1 1 -18.74 -1 imp:n=1
2 0 1 imp:n=0 | | | | | 1 so 8.741 | 1 so 8.741 | 1 so 8.741 | | | | | kcode 10000 1.0 10 110
ksrc 0.0.0.
ml 92235 -94.73
92238 -5.27 | kcode 10000 1.0 10 110
ksrc 0.0.0.
m1 92235.80c -94.73
92238.80c -5.27 | kcode 10000 1.0 10 110
ksrc 0.0.0.
m1 92235.00c -94.73
92238.00c -5.27 | | | | ## Appendix C. ENDF/B-VIII.0-based ACE files for neutron cross-sections The release of ACE files based on ENDF/B-VIII.0 includes neutron cross-section data for 556 isotopes and thermal scattering $S(\alpha, \beta)$ data for 33 materials [7,8]. No data is provided for elements; the elemental carbon data provided in ENDF/B-VII.1 is not supported in ENDF/B-VIII.0. The ACE files for neutron cross-section data are provided at 7 temperatures. The temperatures and ZAID extensions are: | Temperature (K) | ZAID Extension | |-----------------|----------------| | 293.6 | .00c | | 600 | .01c | | 900 | .02c | | 1200 | .03c | | 2500 | .04c | | 0.1 | .05c | | 250 | .06c | The ACE files for neutron cross-section data are available for the ZA numbers listed below, where ZA = Z*1000 + A. For metastable isotopes, ZA = Z*1000 + A + S*100, where S is the excited state number. (There is an exception to this for 242 Am. For historical reasons 95242 is for the first metastable state of 242 Am and 95642 is for ground-state 242 Am.) The available ZAs are (see footnotes at end of table): | 1001 | 1002 | 1003 | 2003 | 2004 | 3006 | 3007 | 4007 | 4009 | 5010 | |-----------|-----------|-------------------|-----------|-----------|--------------------|-------------------|--------------------|-----------|-----------| | 5011 | 6012^* | 6013 [*] | 7014 | 7015 | 8016 | 8017 | 8018* | 9019 | 10020* | | 10021^* | 10022^* | 11022 | 11023 | 12024 | 12025 | 12026 | 13426 [†] | 13027 | 14028 | | 14029 | 14030 | 14031* | 14032^* | 15031 | 16032 | 16033 | 16034 | 16035^* | 16036 | | 17035 | 17036^* | 17037 | 18036 | 18037^* | 18038 | 18039^* | 18040 | 18041* | 19039 | | 19040 | 19041 | 20040 | 20041* | 20042 | 20043 | 20044 | 20045* | 20046 | 20047^* | | 20048 | 21045 | 22046 | 22047 | 22048 | 22049 | 22050 | 23049* | 23050 | 23051 | | 24050 | 24051* | 24052 | 24053 | 24054 | 25054^* | 25055 | | | | | 26054 | 26055* | 26056 | 26057 | 26058 | 27058 | 27458^{\dagger} | 27059 | 28058 | 28059 | | 28060 | 28061 | 28062 | 28063^* | 28064 | 29063 | 29064^* | 29065 | 30064 | 30065 | | 30066 | 30067 | 30068 | 30069^* | 30070 | 31069 | 31070* | 31071 | 32070 | 32071^* | | 32072 | 32073 | 32074 | 32075^* | 32076 | 33073 [*] | 33074 | 33075 | 34074 | 34075^* | | 34076 | 34077 | 34078 | 34079 | 34080 | 34081* | 34082 | 35079 | 35080* | 35081 | | 36078 | 36079* | 36080 | 36081* | 36082 | 36083 | 36084 | 36085 | 36086 | 37085 | Appendix C. ENDF/B-VIII.0-based ACE files for neutron cross-sections | 37086 | 37087 | 38084 | 38085* | 38086 | 38087 | 38088 | 38089 | 38090 | 39089 | |--------------------|--------------------|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | 39090 | 39091 | 40090 | 40091 | 40092 | 40093 | 40094 | 40095 | 40096 | 41093 | | 41094 | 41095 | 42092 | 42093* | 42094 | 42095 | 42096 | 42097 | 42098 | 42099 | | 42100 | 43098* | 43099 | 44096 | 44097* | 44098 | 44099 | 44100 | 44101 | 44102 | | 44103 | 44104 | 44105 | 44106 | 45103 | 45104* | 45105 | 46102 | 46103* | 46104 | | 46105 | 46106 | 46107 | 46108 | 46109* | 46110 | 47107 | 47108* | 47109 | 47510 [†] | | 47111 | 47112* | 47113* | 47114 [*] | 47115^* | 47116* | 47117* | 47518 [†] | 48106 | 48107* | | 48108 | 48109* | 48110 | 48111 | 48112 | 48113 | 48114 | 48515 [†] | 48116 | 49113 | | 49114* | 49115 | 50112 | 50113 | 50114 | 50115 | 50116 | 50117 | 50118 | 50119 | | 50120 | 50521 [*] | 50122 | 50123 | 50124 | 50125 | 50126 | 51121 | 51122* | 51123 | | 51124 | 51125 | 51126 | 52120 | 52121* | 52521 [*] | 52122 | 52123 | 52124 | 52125 | | 52126 | 52527^{\dagger} | 52128 | 52529^{\dagger} | 52130 | 52131* | 52531 [*] | 52132 | 53127 | 53128* | | 53129 | 53130 | 53131 | 53132* | 53532 [†] | 53133* | 53134* | 53135 | 54123 | 54124 | | 54125* | 54126 | 54127^* | 54128 | 54129 | 54130 | 54131 | 54132 | 54133 | 54134 | | 54135 | 54136 | 55133 | 55134 | 55135 | 55136 | 55137 | 56130 | 56131* | 56132 | | 56133 | 56134 | 56135 | 56136 | 56137 | 56138 | 56139* | 56140 | 57138 | 57139 | | 57140 | 58136 | 58137^* | 58537^{\dagger} | 58138 | 58139 | 58140 | 58141 | 58142 | 58143 | | 58144 | 59141 | 59142 | 59143 | 60142 | 60143 | 60144 | 60145 | 60146 | 60147 | | 60148 | 60149* | 60150 | 61143* | 61144* | 61145^* | 61146* | 61147 | 61148 | 61548^{\dagger} | | 61149 | 61150* | 61151 | 62144 | 62145^* | 62146^* | 62147 | 62148 | 62149 | 62150 | | 62151 | 62152 | 62153 | 62154 | 63151 | 63152 | 63153 | 63154 | 63155 | 63156 | | 63157 | 64152 | 64153 | 64154 | 64155 | 64156 | 64157 | 64158 | 64159 | 64160 | | 65158 [*] | 65159 | 65160 | 65161* | 66154* | 66155* | 66156 | 66157* | 66158 | 66159* | | 66160 | 66161 | 66162 | 66163 | 66164 | 67165 | 67566^{\dagger} | 68162 | 68163* | 68164 | | 68165 [*] | 68166 | 68167 | 68168 | 68169 [*] | 68170 | 69168 | 69169 | 69170 | 69171 [*] | | 70168 [*] | 70169^* | 70170^* | 70171* | 70172^* | 70173 [*] | 70174^* | 70175 [*] | 70176* | 71175 | | 71176 | 72174 | 72175^* | 72176 | 72177 | 72178 | 72179 | 72180 | 72181* | 72182^* | | 73180 | 73181 | 73182 | 74180 | 74181* | 74182 | 74183 | 74184 | 74185* | 74186 | | 75185 | 75586 [†] | 75187 | 76184* | 76185^* | 76186^* | 76187^* | 76188 [*] | 76189* | 76190^* | | 76191 [*] | 76192^* | 77191 | 77192^* | 77193 | 77594 [†] | 78190 [*] | 78191 [*] | 78192* | 78193* | | 78194 [*] | 78195* | 78196^* | 78197^* | 78198^* | 79197 | 80196 | 80197* | 80597 [†] | 80198 | | 80199 | 80200 | 80201 | 80202 | 80203* | 80204 | 81203 | 81204* | 81205 | 82204 | | 82205 [*] | 82206 | 82207 | 82208 | 83209 | 83610 [†] | 84208* | 84209* | 84210* | 88223 | | 88224 | 88225 | 88226 | | | | | | | | | 89225 | 89226 | 89227 | 90227 | 90228 | 90229 | 90230 | 90231 | 90232 | 90233 | | 90234 | 91229 | 91230 | 91231 | 91232 | 91233 | 92230 | 92231 | 92232 | 92233 | | 92234 | 92235 | 92236 | 92237 | 92238 | 92239 | 92240 | 92241 | 93234 | 93235 | | 93236 | 93636 [†] | 93237 | 93238 | 93239 | 94236 | 94237 | 94238 | 94239 | 94240 | | 94241 | 94242 | 94243 | 94244 | 94245* | 94246 | 95240 | 95241 | 95642^{\dagger} | 95242 | | | | | | | | | | | | Appendix C. ENDF/B-VIII.0-based ACE files for neutron cross-sections | | | | | | | ` | | / | | |-------|-------|-------------------|-------------------|-------|--------|-------|-------|-------|-------| | 95243 | 95244 | 95644^{\dagger} | 96240 | 96241 | 96242 | 96243 | 96244 | 96245 | 96246 | | 96247 | 96248 | 96249 | 96250 | 97245 | 97246 | 97247 | 97248 | 97249 | 97250 | | | | | | | 98251 | 98252 | 98253 | 98254 | 99251 | | 99252 | 99253 | 99254 | 99654^{\dagger} | 99255 | 100255 | | | | | $^{^*}$ New evaluations in ENDF/B-VIII.0. † Excited state evaluations ### Appendix D. ENDF/B-VIII.0-based ACE files for thermal scattering data, S(alpha,beta) The thermal scattering law (TSL) data from ENDF/B-VIII.0 are available as ACE files from the **nucleardata.lanl.gov** website, in the ENDF80SaB2.tar or ENDF80SaB2.zip files. Previous TSL data files obtained from ENDF80SaB should not be used, since there were some files with incorrect data or processing. The TSL data from ENDF80SaB2 files include: | h-h2o | hydrogen in light water | |--------------------------|---| | h-ice
o-ice | hydrogen in solid light water (ice) oxygen in solid light water (ice) | | h-luci | hydrogen in Lucite | | h-poly | hydrogen in polyethylene | | h-yh2
y-yh2 | hydrogen in yttrium-hydride
yttrium in yttrium-hydride | | h-zrh
zr-zrh | hydrogen in zirconium-hydride zirconium in zirconium-hydride | | d-d2o
o-d2o | deuterium in heavy water oxygen in heavy water | | be-beo
o-beo | beryllium in beryllium-oxide oxygen in beryllium-oxide | | be-met | beryllium metal | | grph10
grph30
grph | 10% porous graphite
30% porous graphite
crystalline graphite | | sio2 | silicon-dioxide | | si-sic
c-sic | silicon in silicon-carbide carbon in silicon carbide | |-----------------|--| | benz | benzene | | n-un
u-un | nitrogen in uranium-nitride uranium in uranium-nitride | | o-uo2
u-uo2 | oxygen in uranium-dioxide uranium in uranium-dioxide | | a l-27 | aluminum-27 metal | | fe-56 | iron-56 metal | | lmeth | hydrogen in liquid methane | | smeth | hydrogen in solid methane | | paraD | liquid para-deuterium | | paraH | liquid para-hydrogen | | orthoD | liquid ortho-deuterium | | orthoH | liquid ortho-hydrogen | For room temperature data (if it exists), the suffix to use is .40t. (There is no room temperature data for hice, o-ice, lmeth, orthoD, orthoH, paraD, paraH, or smeth.) The TSL data for u-uo2 and u-un can be used with *mcnp6.3*, but should **not** be used with previous versions, *mcnp5*, *mcnp6.1*, *mcnp6.1.1*, *mcnp6.2*. These previous versions of *mcnp* were not designed to handle TSL data for fissionable nuclides, and U-235 is identified in the ENDF80SaB2 data as one of the nuclides that should use the TSL data. Modifications were made to *mcnp6.3* to correctly handle TSL data for fissionable nuclides. The set of available S(alpha,beta) ACE files are listed below, with names and temperatures. In the list below, the datasets highlighted in blue should only be used with *mcnp6.3*, and not with older versions of *mcnp*. Since TSL data for u-uo2 & o-uo2 and for u-un & n-un should be used together, the TSL data for o-uo2 and n-un are also highlighted in blue below: | h-h2o.40t | 294 K | d-d2o.53t | 574 | K | c-sic.42t | 500 K | |------------------------|----------------|------------|------|---|-------------|---------| | h-h2o.41t | 284 K | d-d2o.54t | 600 | K | c-sic.43t | 600 K | | h-h2o.42t | 300 K | d-d2o.55t | 624 | K | c-sic.44t | 700 K | | h-h2o.43t | 324 K | d-d2o.56t | 650 | K | c-sic.45t | 800 K | | h-h2o.44t | 350 K | | | | c-sic.46t | 1000 K | | h-h2o.45t | 374 K | o-d2o.40t | 294 | K | c-sic.47t | 1200 K | | h-h2o.46t | 400 K | o-d2o.41t | 284 | K | | | | h-h2o.47t | 424 K | o-d2o.42t | 300 | K | si-sic.40t | 300 K | | h-h2o.48t | 450 K | o-d2o.43t | 324 | K | si-sic.41t | 400 K | | h-h2o.49t | 474 K | o-d2o.44t | 350 | K | si-sic.42t | 500 K | | h-h2o.50t | 500 K | o-d2o.45t | 374 | K | si-sic.43t | 600 K | | h-h2o.51t | 524 K | o-d2o.46t | 400 | K | si-sic.44t | 700 K | | h-h2o.52t | 550 K | o-d2o.47t | 424 | K | si-sic.45t | 800 K | | h-h2o.53t | 574 K | o-d2o.48t | 450 | K | si-sic.46t | 1000 K | | h-h2o.54t | 600 K | o-d2o.49t | 474 | K | si-sic.47t | 1200 K | | h-h2o.55t | 624 K | o-d2o.50t | 500 | K | | | | h-h2o.56t | 650 K | o-d2o.51t | 524 | K | grph.40t | 296 K | | h-h2o.57t | 800 K | o-d2o.52t | 550 | K | grph.41t | 400 K | | | | o-d2o.53t | 574 | K | grph.42t | 500 K | | h-ice.40t | 115 K | o-d2o.54t | 600 | K | grph.43t | 600 K | | h-ice.41t | 188 K | o-d2o.55t | 624 | | grph.44t | 700 K | | h-ice.42t | 208 K | o-d2o.56t | 650 | | grph.45t | 800 K | | h-ice.43t | 228 K | | | | grph.46t | 1000 K | | h-ice.44t | 233 K | be-beo.40t | 294 | K | grph.47t | 1200 K | | h-ice.45t | 248 K | be-beo.41t | 400 | | grph.48t | 1600 K | | h-ice.46t | 253 K | be-beo.42t | 500 | | grph.49t | 1999 к | | h-ice.47t | 268 K | be-beo.43t | 600 | | 9-1 | | | h-ice.48t | 273 K | be-beo.44t | 700 | | grph10.40t | 296 к | | | 2.0 | be-beo.45t | 800 | | grph10.41t | 400 K | | o-ice.40t | 115 K | be-beo.46t | 1000 | | grph10.42t | 500 K | | o-ice.41t | 188 K | be-beo.47t | 1200 | | grph10.43t | 600 K | | o-ice.42t | 208 K | 20 200170 | 1200 | • | grph10.44t | 700 K | | o-ice.43t | 228 K | o-beo.40t | 294 | к | grph10.45t | 800 K | | o-ice.44t | 233 K | o-beo.41t | 400 | | grph10.46t | 1000 K | | o-ice.45t | 248 K | o-beo.42t | 500 | | grph10.47t | 1200 K | | o-ice.46t | 253 K | o-beo.43t | 600 | | grph10.48t | 1600 K | | o-ice.47t | 268 K | o-beo.44t | 700 | | grph10.49t | | | o-ice.48t | 273 K | o-beo.45t | 800 | | grpmrotise | 2000 10 | | 0 100,100 | 270 11 | o-beo.46t | 1000 | | grph30.40t | 296 к | | d-d2o.40t | 294 к | o-beo.47t | 1200 | | grph30.41t | 400 K | | d-d20.41t | 284 K | 0 200.170 | 1200 | • | grph30.42t | 500 K | | d-d20.42t | 300 K | be-met.40t | 296 | ĸ | grph30.43t | 600 K | | d-d20.43t | 324 K | be-met.41t | 400 | | grph30.44t | 700 K | | d-d20.43t | 350 K | be-met.42t | 500 | | grph30.45t | 800 K | | d-d20.45t | 374 K | be-met.42t | 600 | | grph30.46t | 1000 K | | d-d20.45t | 400 K | be-met.43t | 700 | | grph30.47t | 1000 K | | d-d20.47t | 400 K
424 K | be-met.45t | 800 | | grph30.48t | 1200 K | | d-d20.48t | 424 K
450 K | be-met.46t | 1000 | | grph30.49t | 1999 K | | d-d20.48t
d-d20.49t | 450 K
474 K | be-met.47t | 1200 | | grpm30.43t | TJJJ K | | d-d20.49t
d-d20.50t | 4/4 K
500 K | De-met.4/t | 1200 | V | h-luci.40t | 300 K | | d-d20.50t | 500 K
524 K | c-sic.40t | 300 | v | 11-14C1.4Ut | 300 K | | d-d20.51t
d-d20.52t | | c-sic.41t | | | h no1 40+ | 204 12 | | u-u20.52t | 550 K | C-S1C.41T | 400 | V | h-poly.40t | 294 K | | h-poly.41t | 77 K | zr-zrh.41t | 400 | K | orthod.40t | 19 | K | |------------|--------|------------|------|---|------------|------------|---| | h-poly.42t | 196 K | zr-zrh.42t | 500 | K | | | | | h-poly.43t | 233 K | zr-zrh.43t | 600 | K | orthoh.40t | 20 | K | | h-poly.44t | 300 K | zr-zrh.44t | 700 | K | | | | | h-poly.45t | 303 K | zr-zrh.45t | 800 | K | parad.40t | 19 | K | | h-poly.46t | 313 K | zr-zrh.46t | 1000 | K | | | | | h-poly.47t | 323 K | zr-zrh.47t | 1200 | K | parah.40t | 20 | K | | h-poly.48t | 333 K | | | | | | | | h-poly.49t | 343 K | sio2.40t | 294 | K | u-un.40t | 296 | K | | h-poly.50t | 350 K | sio2.41t | 350 | K | u-un.41t | 400 | K | | | | sio2.42t | 400 | K | u-un.42t | 500 | K | | h-yh2.40t | 294 K | sio2.43t | 500 | K | u-un.43t | 600 | K | | h-yh2.41t | 400 K | sio2.44t | 800 | K | u-un.44t | 700 | K | | h-yh2.42t | 500 K | sio2.45t | 1000 | K | u-un.45t | 800 | K | | h-yh2.43t | 600 K | sio2.46t | 1100 | K | u-un.46t | 1000 | K | | h-yh2.44t | 700 K | | | | u-un.47t | 1200 | K | | h-yh2.45t | 800 K | al-27.40t | 294 | K | | | | | h-yh2.46t | 1000 K | al-27.41t | 20 | K | n-un.40t | 296 | K | | h-yh2.47t | 1200 K | al-27.42t | 80 | K | n-un.41t | 400 | K | | h-yh2.48t | 1399 K | al-27.43t | 400 | K | n-un.42t | 500 | K | | h-yh2.49t | 1600 K | al-27.44t | 600 | K | n-un.43t | 600 | K | | | | al-27.45t | 800 | K | n-un.44t | 700 | K | | y-yh2.40t | 294 K | | | | n-un.45t | 800 | K | | y-yh2.41t | 400 K | benz.40t | 296 | K | n-un.46t | 1000 | K | | y-yh2.42t | 500 K | benz.41t | 350 | K | n-un.47t | 1200 | K | | y-yh2.43t | 600 K | benz.42t | 400 | K | | | | | y-yh2.44t | 700 K | benz.43t | 450 | K | u-uo2.40t | 296 | K | | y-yh2.45t | 800 K | benz.44t | 500 | K | u-uo2.41t | 400 | K | | y-yh2.46t | 1000 K | benz.45t | 600 | K | u-uo2.42t | 500 | K | | y-yh2.47t | 1200 K | benz.46t | 800 | K | u-uo2.43t | 600 | K | | y-yh2.48t | 1399 K | benz.47t | 1000 | K | u-uo2.44t | 700 | K | | y-yh2.49t | 1600 K | | | | u-uo2.45t | 800 | K | | | | fe-56.40t | 294 | K | u-uo2.46t | 1000 | K | | h-zrh.40t | 296 K | fe-56.41t | 20 | K | u-uo2.47t | 1200 | K | | h-zrh.41t | 400 K | fe-56.42t | 80 | K | | | | | h-zrh.42t | 500 K | fe-56.43t | 400 | K | o-uo2.40t | 296 | K | | h-zrh.43t | 600 K | fe-56.44t | 600 | K | o-uo2.41t | 400 | K | | h-zrh.44t | 700 K | fe-56.45t | 800 | K | o-uo2.42t | 500 | K | | h-zrh.45t | 800 K | | | | o-uo2.43t | 600 | K | | h-zrh.46t | 1000 K | lmeth.40t | 100 | K | o-uo2.44t | 700 | K | | h-zrh.47t | 1200 K | | | | o-uo2.45t | 800 | K | | | | smeth.40t | 22 | K | o-uo2.46t | 1000 | K | | zr-zrh.40t | 296 K | | | | o-uo2.47t | 1200 | K | | | | | | | | | | SabID's highlighted in blue are commented-out and not available in the xsdir_mcnp6.2_endf71,80 and xsdir_mcnp6.2_endf80,71 files. They should not be used with mcnp6.2 or earlier versions. The SabID's in blue should be used only with mcnp6.3 and later versions. The forthcoming release of mcnp6.3 will include an xsdir_mcnp6.3 file that makes those SabID's available. Users who have access to the pre-release mcnp6.3 can uncomment the associated lines in the xsdir_mcnp6.2_endf71,80 and xsdir_mcnp6.2_endf80,71 files, simply by changing the leading # symbol to a blank on the associated lines.